
Achieving Reliability through Replication in a Wide-Area Network
DHT Storage System ∗

Jing Zhao§, Hongliang Yu§, Kun Zhang§, Weimin Zheng§, Jie Wu†, Jinfeng Hu£

§Department of Computer Science and Technology, Tsinghua University; £IBM CRL, Beijing
†Department of Computer Science and Engineering, Florida Atlantic University

Abstract

It is a challenge to design and implement a wide-area
distributed hash table (DHT) which provides a storage ser-
vice with high reliability. Many existing systems use repli-
cation to reach the goal of reliability. However, maintaining
availability and consistency of the replicas becomes a major
hurdle. A reliable storage system needs to recover lost and
inconsistent replicas, but any recovery strategy will lead to
extra workloads which affect the throughput of the system.
This paper explores these problems and provides a possible
solution. We argue that our approach not only keeps even-
tual consistency of replicas but also quickens the spread of
updates. We use an adaptive recovery strategy to guaran-
tee the reliability of replicas as well as bandwidth saving.
With a simulation result better than epidemic algorithms,
we have also implemented and deployed a DHT system us-
ing strategies mentioned in this paper, and integrated it into
Granary - a storage system distributed in 20 servers in 5
cities. Granary and the DHT system have run over half a
year and provide a reliable storage service to several hun-
dred users.

Keywords: Availability, consistency, DHT, distributed
storage, reliability, replication, peer-to-peer systems.

1. Introduction

Replication is an effective and convenient method used
to guarantee the reliability of data in distributed storage sys-
tems. However, replication brings a new problem: we must
guarantee the reliability of replicas. If a user makes an up-
date to some data, all replicas of the data should be able
to exhibit this change. When some applications have been
updated while others still exhibit an old state, it is called
inconsistency. Several factors may cause inconsistency of
replicas, e.g., churn of DHT nodes, drop of update mes-

∗This work is supported by NSFC under Grant No. 60433040 and No.
60603071.

sages, and network partitions [1, 7, 17]. Replicas may also
be lost. When nodes depart from the system, data stored on
them will lose a replica. Some new nodes may join in the
DHT system after that. If we do not move responding data
replicas to these new nodes, data which should be stored on
them will also seem to lose a replica.

For a replication storage system, the use of epidemic al-
gorithms [5] is a traditional method of maintaining the re-
liability of replicas. One site selects another site randomly
and periodically, and compares its own data’s state with the
other so as to determine if there is any loss or inconsis-
tency. To decrease bandwidth cost, they use the hash value
of replicas instead of the replica’s contents. OpenDHT [12]
and DHash [4] both use epidemic algorithms. They em-
ploy Merkle trees [9] and transfer the hash summary during
the process of anti-entropy. For systems that do not have
to handle frequent update operations, or systems that only
require eventual consistency and can tolerate some update
loss, this method works well. It can guarantee durability
and the eventual consistency of data. However, some sys-
tems have to handle frequent update operations and require
all these updates to be exhibited. For these systems, dura-
bility is not enough - they need to guarantee the availability
and consistency of all replicas and be able to recover an in-
consistent data set as soon as possible.

In this paper, we will provide an example of such a sys-
tem. We target the reliability of replicas in the name of both
availability and consistency. Epidemic algorithms cannot
meet these needs well. Since a site chooses a remote site
randomly and periodically for synchronization, many syn-
chronization processes will happen between two sites with
consistent data sets, which will extend the recovery time for
those sites’ lost replicas or new updates. Users may read
null or inconsistent data from these sites. Therefore, dur-
ing the recovery time, the availability of replicas will not
be guaranteed. A long recovery time may lead to another
problem: even if all the replicas exhibit the same eventual
state in the end, some replicas may miss a few midterm
states, that is, they cannot get a higher version of update
(the update may be lost on the network and need to be re-



covered) before the highest version comes first. In this sit-
uation, users may get jumping operation results. A smaller
synchronization interval may quicken recovery speed, but
that leads to higher bandwidth cost.

We have addressed the above problem in the Granary
project [6]. Granary is a wide-area networked storage sys-
tem. Users can upload their files onto the nodes of Gra-
nary, and can download or modify these files. Besides, users
can use Granary to share their files with their friends. Gra-
nary can be used to backup operating systems or provide file
sharing services. It contains a DHT storage system which
is also distributed on wide-area networks, and stores three
kinds of meta-data into it.

Granary uses replication to maintain the reliability of
data, and its first kind of meta-data indicates which nodes of
Granary are storing replicas of a certain file. Before users’
files are located, Granary will fetch this kind of meta-data
first to learn where users’ files are located. These meta-
data may be updated by upper-applications of Granary be-
cause Granary may migrate the replicas adaptively in or-
der to boost performance and balance loads. The second
kind of meta-data includes the information about Granary’s
users, including user names, passwords and quota informa-
tion. Granary will fetch this kind of meta-data to check
the user’s authorization and whether the user has reached
the upper limit of his/her quota. This kind of meta-data
will be updated when users change their passwords, or up-
load/delete their files. The last kind of meta-data is users’
catalog information, which represents structures of users’
files. Granary must fetch this kind of meta-data when users
want to list their files. This catalog meta-data is updated the
most frequently, since Granary updates this kind of meta-
data whenever users make any changes to their catalog, e.g.,
adding a new file or deleting an old one.

As stated above, we use the replication strategy to main-
tain the meta-data of Granary. The availability of replicas
for the three kinds of meta-data is significant. The DHT sys-
tem must guarantee that Granary can always get the newest
replica, or Granary will behave abnormally or even become
unusably. However, the meta-data is mutable, and the last
two kinds of meta-data are updated frequently. Considering
Granary’s wide-area network environment, maintaining the
availability and consistency of meta-data’s replicas is a big
challenge.

The DHT system deployed in Granary is called
ConDHT, and we argue that our DHT system can meet the
above needs and provide a reliable storage service which
ensures data availability and consistency. The target size
of the system is not huge - it only contains several hun-
dred nodes. Nodes of ConDHT are relatively steady - they
will not leave the system frequently like nodes in most peer-
to-peer systems [1, 8]. Although this assumption avoids a
high-frequency churn of nodes, we still have to handle prob-

lems brought by nodes’ arrival and departure: we may add
hosts to extend the size of ConDHT, and hosts may depart
because of network problems, disk failures, power cut, or a
number of other factors. ConDHT is deployed on wide-area
networks and has similar characteristics to PlanetLab.

We will represent a recovery strategy in this paper, which
we argue can find and recover lost and inconsistent repli-
cas quickly. The strategy uses an adaptive algorithm which
saves bandwidth and improves the system’s throughput.
Both simulation and practical results will be given. We have
deployed the Granary system, including ConDHT on 20
machines located on networks across 5 different cities: Bei-
jing, Shanghai, Guangzhou, Wuhan, and Hangzhou. Now
that the system has safely run for over half a year, it is
mainly used as a backup system and an alternative choice
for U-disks on campus at the present time.

The rest of the paper is organized as follows: Section 2
details the architecture of ConDHT and the recovery strat-
egy, as well as an adaptive algorithm which can maintain
throughput of the system. Evaluations and measurements
will be given in Section 3. Section 4 contains information
regarding related works. Finally, we have a concluding re-
mark in Section 5.

2. Architecture of ConDHT

Similar to many previous DHT systems [4, 14, 16],
ConDHT assigns a random 128-bit node identifier to each
node. The node can be seen as distributed in a 2128-element
circle, called nodeId space. For a value being stored into
ConDHT with key k, the DHT hashes k (with a consis-
tent hash function like SHA-1) into a 128-bit hashId h.
ConDHT demands that the data with hashId h should be
stored on a specific number (the replication number of the
DHT storage system) of successor nodes.

The interfaces provided by ConDHT are simple, three
operations are included: put(key, value, version), get(key)
and delete(key, version). ConDHT is a versioned storage
system: each value owns a version number. Given the same
key, a higher-version value will automatically replace the
lower-version one. A user invokes the put interface and pro-
vides a higher version number when updating. A higher ver-
sion number should also be provided when deleting some
data - ConDHT handles delete requests similar to put re-
quests. For convenience, in the following we call the data
stored in a ConDHT system DHT objects or objects.

2.1. DHT Implementation

In this section, we will detail the implementation of the
put interface of ConDHT. ConDHT maintains failing infor-
mation during the put process, and uses the information for
future recovery.



When invoking the put interface, a key-value pair and a
version number must be provided. The user (here we use
“user” to indicate the upper-applications of Granary which
invoke ConDHT’s interfaces) contacts a node of ConDHT
which acts as a gateway node. Every node of ConDHT can
act as the gateway. The gateway node is noted as node G.

Assume that we maintain R replicas for a DHT object.
In the put process, Node G first calculates which R nodes
should be responsible for storing the R replicas according
to its routing table. Then it sends the object, including the
version number, to these nodes. Upon receiving the object
from node G, the receiver node uses its routing table to cal-
culate which other R-1 nodes should store this DHT object
and record their nodeIds. When node G has received “ACK”
messages from all the R nodes or timeout reaches, node G
will send an message to these nodes, informing them of all
the nodes’ nodeIds which store the DHT object success-
fully. Thus nodes will know which nodes possibly failed
to store the DHT object. They maintain this information
into a local data structure named target list, and use the tar-
get list to recover replicas. We detail the recovery strategy
in later sections.

We use asynchronous communication in the put inter-
face, so that the put process is nonblocking. The put in-
terface will return a receipt to the invoker, and the invoker
can learn the number of successful storing nodes through
the receipt. Users can customize the expected number of
successful storing nodes. Therefore, users will not waste
time waiting for the put process to return for slower nodes
or delayed messages on network.

2.2. Recovery Strategy

The ConDHT system can handle four kinds of abnormal
situations, including node’s transient failure, message drop
on networks, node’s permanent failure and new node’s join-
ing. The former two situations may cause replicas’ incon-
sistency and temporary loss, while the latter two will lead
to replicas’ loss. ConDHT must be able to find and recover
the inconsistency and loss as soon as possible.

2.2.1 Push and Pull

As we have mentioned before, all nodes of ConDHT main-
tain a target list indicating which node lacks which DHT ob-
ject during a put (or delete) process. For example, suppose
node A lacks a DHT object O. Node B keeps this infor-
mation in its target list and wants to do the recovery work.
Suppose Node A’s lack is caused by its transient departure.
The system does not know when node A will come back.
Thus node B has to ping node A and send it the key and the
version number periodically until node A comes back. Then
node B sends the object O to node A. All nodes which have

object O will send this kind of message to node A periodi-
cally. We call this process the “push” process.

When node A comes back and receives these messages,
it chooses a node with the highest-version object O to fetch
it back. We call this the “pull” process. In the pull process,
we can use delta-coding to send differences. But since the
size of DHT object is not large, we send the whole object
in our implementation. After node A has gotten object O,
it broadcasts a message to all the recovering nodes, telling
them that it has object O. Then all other nodes will delete
the pair {A, O} from their target lists.

This method records all the data loss and failure infor-
mation in the first two abnormal situations, and recovers
the glitches with little bandwidth cost, since most message’s
sizes are small. It can guarantee that the recovered replica is
the newest one. Furthermore, even if some messages con-
taining the recovery information are lost on network, the
method still guarantees that the replica can be recovered at
last. As we have shown above, the recovery work will not
stop until node A declares that it has gotten the replica.

(a) (b)

O

Z

Y

X

A

B

C

O

Z

Y

X

A

B

C

Figure 1. Two recovery methods after node O
departs from the DHT.

2.2.2 Eager and Lazy

When a node departs from ConDHT permanently, each
DHT object stored in it will lose a replica. Figure 1(a) de-
picts this situation. Assuming node O departs from the sys-
tem, we maintain 3 replicas for each DHT object. Before
node O’s departure, any DHT object whose hashId falls into
the region from node X (not included) to node Y (included,
and we represent these DHT objects as Oxy) has a replica
in node Y , Z, and O. After node O’s departure, Oxy will be
stored in node Y , Z, and A, thus node Y and Z will send a
replica to node A.

ConDHT implements two methods to complete this task.
The first method is shown in Figure 1(b). After node O
departs from the DHT, for each DHT object only one node
(the first successor) is responsible for the object’s recovery
work. For example, node Y will recover Oxy to node A,



node Z will recover Oyz to node B, and node A will recover
Ozo to node C. The DHT objects will be sent directly. We
call this recovery method an eager recovery method.

Another method is similar to the push-pull process which
we have introduced above. As Figure 1(a) shows, node Y
and node Z will add the recovery task of sending Oxy to
node A into their target list first. Then the push-pull process
and an adaptive algorithm which is stated in the next section
will be used to finish the recovery work. When a gateway
node tries to get the object from node A before it finishes
pulling, node A will fetch the object and store the object
locally. This is the lazy recovery method.

The eager recovery method is a quicker recovery method
for recovery and can do the work well when message drop
and network congestion is not severe. However, it may
bring some bandwidth bursts. Since one node may store
a large amount of DHT objects, to recover them in an ea-
ger way leads to a high bandwidth cost. Furthermore, the
eager recovery method cannot guarantee that the recovered
replica is the newest one. In the contrary, the lazy method
can avoid the bandwidth burst and choose the newest repli-
cas to fetch.

O

Z

Y

X

A

B

C

(a)

O

Z

Y

X

A

B

C

(b)

Figure 2. Two recovery methods after node O
is added to the DHT.

Figure 2 depicts the scenario when node O is added into
ConDHT. Some DHT objects should be migrated according
to the semantic of DHT. Figure 2(a) and (b) depicts both the
lazy and eager recovery methods. For lazy recovery, node
Y , Z and A all send recovery messages to node O contain-
ing keys and versions of Oxy; after node O declares it has
got all the replicas of Oxy , node A will delete them from its
local database. For eager recovery, Node A sends replicas
of DHT objects Oxy to node O; node B sends replicas of
DHT objects Oyz to node O; and node C sends replicas of
DHT objects Ozo to node O.

2.3. Throughput Maintenance

A reliability maintenance strategy will cause extra band-
width cost since the storage system must detect inconsis-

tency and data loss and try to solve it. Most bandwidth re-
sources should be used by upper-level applications of Gra-
nary, which process users’ files. Too much bandwidth cost
in ConDHT may affect the throughput of Granary system,
thus in ConDHT we must find a way to reduce bandwidth
cost and improve throughput.

Sean Rhea et al. [13] had found that a reactive recov-
ery may create a positive feedback cycle which will cause
congestion collapse in network. Therefore they chose a pe-
riodical recovery strategy for Bamboo DHT. The discussion
was focused on the routing table recovery, but it is also valu-
able for the storage application. If there is congestion in the
network link between two nodes, object transfers during a
recovery operation will surely exacerbate the bad situation.
The main bandwidth cost should be the replicas’ transfer
in a recovery process. Knowing when to transfer DHT ob-
ject replicas is important for the system’s performance. We
design an adaptive algorithm to determine the transferring
time dynamically.

When we use the push-pull protocol to do the recovery
work, replicas will be transferred during the pull process.
Suppose node A receives messages indicating that it lacks a
DHT object O. The default pull strategy of ConDHT is as
follows:

1. Node A puts the id of object O and the nodeIds of
nodes which have the highest version for object O into
a local structure called source list.

2. Node A does pull operations periodically. Each time
node A chooses a portion of its lacking DHT objects
to pull according to its source list. Here, the interval
between two pulls is dynamic.

Node A checks the recent history of the routing table
first. If the routing table tells that few node activities have
happened recently, it will conclude that the network condi-
tion is good, and choose a short interval. However, if node
A finds frequent node changes, it will estimate the num-
ber of remaining replicas of the object. In the case that the
number is still upon a threshold, node A will choose a rela-
tively long period to pull the object, while if the number is
below the threshold, which means the availability of the ob-
ject is dangerous, the pull will be started immediately. This
method is adaptive to node activities.

3. Evaluation and Measurement

In this section we will present the evaluation and mea-
surement results of ConDHT. First, we compare our recov-
ery strategy with the epidemic strategy on a simulation plat-
form. Then we will give measurement results of the de-
ployed practical system.



3.1. Simulation Results

We evaluate ConDHT on a discrete event-driven simula-
tion platform. This simulation platform uses GT-ITM [18]
to simulate the network topology, reads a one-year-long
PlanetLab trace (from June 1st, 2005 to May 31st, 2006)
collected by the CoMon project [10] supplemented with
event logs from PlanetLab Central [11] as input, and simu-
lates about 600 nodes’ activities accordingly. ConDHT uses
simple timeout to distinguish transient failures from perma-
nent failures, which may cause unnecessary recovery work.
However, the method presented in Carbonite [3] can also be
integrated into our system, so as to reduce some needless
recovery. We set the timeout value to 24 hours, that is, if a
node has been out of reach for one day, it will be declared
a permanent departure and recovery work will be triggered.
A DHT object is put into ConDHT every 20 seconds, which
has three sizes: 1KB, 5KB and 20KB. In one year’s time,
every DHT object will be updated about 20 times on aver-
age. 5 replicas are maintained for every DHT object. On
this simulation platform we implement two types of recov-
ery methods for ConDHT:
•Adaptive and Eager method. This implementation uses

the push-pull recovery strategy. Since CoMon’s records are
collected on average every 5 minutes, if a node is out of
reach temporarily, it will not come back until at least 5 min-
utes later. Thus in our simulation experiment every node
invokes the push operation every 5 minutes. Nodes use the
adaptive algorithm to determine when to pull lost DHT ob-
jects. After node activity, this implementation uses the ea-
ger recovery method, that is, an appointed node will move
the corresponding DHT objects directly.
• Adaptive and Lazy method. This implementation em-

ploys the same recovery strategy but uses the lazy recovery
method after node activity. The threshold during the pull
process is set to 3.

We evaluate the bandwidth cost and recovery time in
the simulation experiment. As a comparison, we also im-
plement an epidemic synchronization protocol which uses
Merkle trees. Two sets of simulation results will be given.
One is produced when the synchronization protocol runs ev-
ery 5 minutes, and the other is produced when the synchro-
nization protocol runs every 10 minutes.

Figure 3 shows the cumulative distribution of bandwidth
cost of the system in a year’s time of 4 recovery strategies.
From the figure we can see that the bandwidth cost will de-
crease when we choose a larger synchronization interval for
the epidemic strategy. Epidemic strategies have the high-
est value of bandwidth cost - about 5 megabytes per sec-
ond. This may be caused by the long recovery time: many
lost or inconsistent DHT objects have been accumulated and
are recovered once. This kind of bandwidth burst can be
avoided by modifying the epidemic strategy a bit: when a

1 10 100 1000 10000 100000 1000000 1E7
0.0

0.2

0.4

0.6

0.8

1.0

 

 

fra
ct

io
n 

of
 b

an
dw

id
th

bandwidth (byte/s)

 adaptive_lazy
 adaptive_eager
 epidemic_5
 epidemic_10

Figure 3. Cumulative distribution of band-
width cost of 4 recovery strategies.

lot of objects need to be recovered, they can be sent in sev-
eral times. Both adaptive strategies cost less bandwidth,
since they omit the data compared with the epidemic strate-
gies. Compared with the lazy strategy, the eager one costs
less bandwidth most of the time, but it has several band-
width bursts. The highest burst reaches 3 megabytes per
second, which can be a great threat to the system’s through-
put. This is because, after nodes’ joining and departure,
large amounts of DHT objects will be recovered and an ea-
ger recovery strategy chooses a proactive way to recover
them. Since the lazy method uses the push-pull strategy
which pushes versions and keys first, the bandwidth burst
will be avoided, and the recovery time will be extended.
This increases the bandwidth cost in the usual time, but the
increase will not affect the throughput of the system.

Figure 4 presents the recovery time used by the 4 recov-
ery strategies. From the figure we can see that the adap-
tive eager strategy uses much less recovery time than other
strategies. A small synchronization interval (5 minutes) for
epidemic strategy can quicken the recovery, but it still costs
over 15 minutes to repair inconsistency and data loss on av-
erage. This period is too long to protect users from getting
inconsistent data. Even if we set a smaller synchronization
period (which will cause a higher bandwidth cost), it is still
possible that a node will take much time synchronizing with
other normal nodes before it synchronizes with an abnormal
node with inconsistent data set. The adaptive and lazy strat-
egy also takes a lot of time to finish the recovery process.
This is because it extends the recovery time for nodes’ ac-
tivities. As a result of the large amounts of DHT objects to
recover after nodes’ activities, the average recovery time of
lazy strategy is long. However, even if the recovery work



1 10 100 1000 10000 100000
0.0

0.2

0.4

0.6

0.8

1.0

 

 

fra
ct

io
n 

of
 D

H
T 

ob
je

ct
s

recovery time (s)

 adaptive_lazy
 adaptive_eager 
 epidemic_5
 epidemic_10

Figure 4. Cumulative distribution of recovery
time for DHT objects of 4 recovery strategies.

has not finished, users can still get the most recent replicas
from all the nodes. The push process is done in a short time
after a node’s departure or joining. Thus, although some
nodes may have not finished the pulling work, they can still
fetch the requested objects from remote nodes according to
the information stored in their source lists.

1 2 3 4 5 Prob.
adaptive eager 0 0 4 46 49950 99.9%
adaptive lazy 0 0 7 105 49888 99.776%
epidemic 5 0 0 1 61 49938 99.876%
epidemic 10 0 0 38 380 49582 99.164%

Table 1. Proportion of DHT objects with full
replicas among 50000 DHT objects. Each
column indicates the number of DHT objects
maintaining the specific number of consis-
tent replicas.

Table 1 represents the final state of DHT objects stored
in ConDHT. We trace 50,000 DHT objects for each recov-
ery strategy. For the adaptive and eager recovery strategy,
99.9% (49,950 out of 50,000) DHT objects maintain full
and consistent replicas, and for the adaptive and lazy re-
covery strategy, the percentage is 99.776% (49,888 out of
50,000), a little bit smaller than the former one caused by a
longer recovery time: several replicas have not been recov-
ered yet. Those incomplete and inconsistent replicas will
still be recovered since they are recorded in target lists. Be-
sides, when users try to get a DHT object from a node stor-
ing an inconsistent replica, ConDHT will fetch the correct
one from remote nodes according to the node’s source list.

3.2. Deployed ConDHT System

Besides the simulation experiment, we have also con-
ducted evaluations and measurements on the deployed prac-
tical ConDHT system. The practical ConDHT is imple-
mented with over 20,000 lines of Java code and is deployed
on 20 machines across networks over 5 cities in China.
Among these 20 machines, 5 machines are configured with
two Pentium Xeon CPU (2.8 GHz), 3.5 GB memory, two
250 GB SATA disks and a 100 Mbps full-duplex Ethernet
connection, and the other 15 machines are configured with
two 3.0 GHz Pentium 4 CPU, 2.0 GB memory, two 250 GB
SATA disks and a 100 Mbps full-duplex Ethernet connec-
tion. The server’s OS is Linux, and the kernel version is
2.6.12. The network latency between hosts in the same city
is less than 10 milliseconds, as opposed to the several hun-
dred millisecond latency between hosts in different cities.

¿From the above subsection, we can learn that the adap-
tive recovery strategy can greatly quicken the recovery pro-
cess. In the practical ConDHT system, we employ this
strategy. To avoid bandwidth bursts caused by the eager re-
covery strategy during node activities which may affect the
throughput of the system greatly, we finally choose the lazy
recovery strategy to deal with node activities. Five replicas
are maintained for each DHT object, and the interval of the
push operation is 1 minute. We set the threshold number to
three in the pull process. In the pull process, we set an upper
limit for the bandwidth cost. Thus, in every pull operation,
the node can pull 50 DHT objects at most.

ConDHT has stored a rather large quantity of meta-data
as DHT objects for Granary. At present, our deployed Gra-
nary system has about 300 registered users, and the number
is increasing everyday. Each user is allowed to store at most
2 gigabytes worth of files in the system. Up to now, each
user has been maintaining about 800 MB worth of files onto
their spaces on average. A typical user’s space may contain
personal documents, together with some multimedia files.
These files will generate about 100 DHT objects represent-
ing the files’ location, and about 10 DHT objects represent-
ing catalog information. Besides, the information of each
Granary’s registered user will correspond to one DHT ob-
ject for his username, password and quota information. Ta-
ble 2 shows the numbers of different types of DHT objects.

Type of DHT Objects Number of DHT Objects
location of files 28685

catalog information 3270
user-info 281

Table 2. Statistic of DHT objects stored in
ConDHT.

ConDHT handles frequent put/update operations. When



a user of Granary uploads a single file onto his/her space,
a DHT object for the location of the file will be gener-
ated and put into ConDHT. Besides, two other objects will
be updated: one for the user’s catalog information and an-
other for his/her quota. If the user uploads a whole direc-
tory which contains files and sub-directories, many more
DHT objects will be put/updated. For instance, 307 cat-
alog DHT objects and 613 location DHT objects will be
put/updated when we upload the source code directory of
Granary project (containing the cvs files) onto Granary.
These frequent put/update operations can easily cause in-
consistency and data loss on the wide-area network envi-
ronment of ConDHT.

100 1000
0.0

0.2

0.4

0.6

0.8

1.0

 
 

fra
ct

io
n 

of
 D

H
T 

ob
je

ct
s

recovery time (s)

Figure 5. Cumulative distribution of recovery
time in the practical ConDHT system.

Figure 5 depicts the recovery time of the practical
ConDHT system. The statistical data is collected from two
weeks’ log of ConDHT system (from October 1st, 2006 to
October 14th, 2006). In two weeks’ time there is no node
joining or departure, but there are still inconsistent and in-
complete replicas generated during common put/update op-
erations. As the figure shows, all of the recovery work is
done in less than 15 minutes.

We have encountered permanent node failures during
Granary’s running. On November 3rd, 2006, two sets of
BDB files each containing 12,500 DHT objects stored on
two nodes were damaged due to misoperation during the
system update. Thus, the Granary system had to handle the
two nodes as permanent departure nodes. Figure 6 shows
the bandwidth costs of a node which should pull damaging
replicas before and after two nodes lost their data perma-
nently in two days’ time. After nodes’ departure, ConDHT
took 30 seconds to finish the push process. In this period,
some meta-data might not be received from some nodes
since the data had not been migrated to them yet. But af-

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
0

20000

40000

60000

80000

100000

 

 

ba
nd

w
id

th
 (b

yt
e/

s)

time (s)

Figure 6. Bandwidth cost of a recovering
node when two nodes lost their data perma-
nently.

ter the push process, these nodes could know where to fetch
the data from remote nodes according to their source lists.
Therefore although the whole pull process lasted about 19
hours, there was no influence from users. A long pull time
can avoid bandwidth bursts. From Figure 6 we can see that
during the recovery work, the bandwidth cost was always
around 70 KB/s, which is not a big burden for the system.
This upper limit of bandwidth cost is due to the upper limit
of the number of DHT objects in each pull operation.

4. Related Work

OpenDHT [12] is a public DHT service which is now
deployed on PlanetLab. OpenDHT provides a put and get
interface. Before a user want to update his/her file, he/she
must remove the old file first, then upload the new one.
OpenDHT uses epidemic algorithm for replica synchroniza-
tion. When inconsistency of replicas happens, the con-
flict resolution procedure is provided by users. The sys-
tem assumption simplifies replicas’ consistency problem.
OpenDHT focuses more on how to provide a general DHT
service and a simple interface, thus its storage application
is less flexible. OpenDHT only provides eventual consis-
tency for its data. In the case of network partitions or exces-
sive churn, OpenDHT may fail to return values that have
been put or continue to return values that have been re-
moved. Imperfect clock synchronization in the DHT may
also cause values to expire at some replicas before others,
leaving small windows where replicas return different re-
sults. Thus, when we develop a system where availability
and consistency of replicas are significant, OpenDHT’s syn-
chronization strategy is not enough.



DHash++ [4] uses a similar reliability and consistency
strategy with OpenDHT, except it uses an erasure code strat-
egy to realize redundancy. The erasure code is a good
method of maintaining reliability, but it generates too much
workload when handling lots of read and update requests.

Total Recall [2] is a file storage system which can be built
on DHT. It provides a dynamic and hybrid way to guarantee
reliability. Total Recall uses a lazy strategy and erasure cod-
ing to maintain large files, and an eager strategy and repli-
cation to maintain small files. Total Recall uses these ap-
proaches to decrease workloads of redundancy and repair
mechanisms. We have borrowed some ideas from Total Re-
call’s strategies. In Total Recall, an update is not successful
until all the replica hosts acknowledge their writes to their
local databases. Thus the system does not need to maintain
the consistency of replicas after an update like ConDHT.

Proactive replication [15] is a way to guarantee the dura-
bility of data. Before any glitch happens, the system does
some recovery work forwardly so that when a glitch hap-
pens, a bandwidth burst can be avoided. This method works
well for seldom-updated storage services, but when the up-
date process is frequent, proactive replication will be inap-
plicable.

5. Conclusions

In this paper, we have shown methods which were used
to achieve the reliability in a distributed storage system built
on DHT. Our system, ConDHT, is designed, implemented
and deployed on wide-area networks, and disposes frequent
update requests. We argue that the recovery strategy of
ConDHT can increase the speed of recovery and guaran-
tee the availability and consistency very well for replicas of
the meta-data stored on it. The adaptive algorithm which
we use can decrease the bandwidth cost and maintain the
throughput of the system.

We have evaluated our recovery strategies on a simula-
tion platform and get better results compared with epidemic
ones. More important, we have introduced how we cur-
rently deploy this system. Measurement results from the
deployed system are also given, which may be helpful to
related researches. The system is running stably and we
plan to extend it to a larger scale in the near future.

References

[1] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability.
In International Workshop on Peer-to-Peer Systems (IPTPS), Feb,
2003.

[2] R. Bhagwan, K. Tati, Y. C. Cheng, S. Savage, and G. M. Voelker.
Total Recall: System support for automated availability manage-
ment. In Proc. of the USENIX Symposium on Design and Imple-
mentation (NSDI), San Francisco, CA, 2004.

[3] B. G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris. Efficient Replica Main-
tenance for Distributed Storage Systems. In Proc. of the USENIX
Symposium on Design and Implementation (NSDI), San Jose, CA,
2006.

[4] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris.
Designing a DHT for low latency and high throughput. In Proc.
of the USENIX Symposium on Design and Implementation (NSDI),
San Francisco, CA, 2004.

[5] A. J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry Epidemic algo-
rithms for replicated database maintenance. In Proceedings of ACM
Symposium on Principles of Distributed Computing (PODC), 1987.

[6] Granary Project Homepage, 2006
http://hpc.cs.tsinghua.edu.cn/granary/granary.html

[7] K. P. Gummadi, S. Saroiu, and S. Gribble. A measurement study
of Napster and Gnutella as examples of peer-to-peer file sharing
systems. Multimedia Systems Journal, 9(2):170-184, Aug. 2003

[8] K. P. Gummadi, R. J. Dunn, S. Sariou, S. D. Gribble, H. M. Levy,
and J. Zahorjan. Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload. In Proc. of the ACM Symposium on
Operating Systems Principles (SOSP), NY, USA, Oct, 2003.

[9] R. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, Proceedings of the Annual
International Cryptology Conference (CRYPTO), pages 369C378.
Springer-Verlag, 1988.

[10] K. S. Park, and V. Pai. CoMon: a mostly-scalable monitoring sys-
tem for PlanetLab. In ACM SIGOPS Operating Systems Review 40,
1 (Jan. 2006), 65-74. http://comon.cs.princeton.edu/.

[11] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint
for introducing disruptive technology into the Internet. In
Proc. of the 1st HotNets Workshop, Princeton, NJ, Oct, 2002.
http://www.planet-lab.org.

[12] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT service
and its uses. In Proc. of SIGCOMM’05, Philadelphia, PA, Aug.
2005.

[13] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn
in a DHT. In Proc. of the USENIX Annual Technical Conference,
June 2004.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
of Middleware’01, Heidelberg, Germany, Nov. 2001.

[15] E. Sit, A. Haeberlen, F. Dabek, B. G. Chun, H. Weatherspoon, R.
Morris, M. F. Kaashoek and J. Kubiatowicz. Proactive replication
for data durability. In International Workshop on Peer-to-Peer Sys-
tems (IPTPS), Santa Barbara, CA, February 2006.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. of SIGCOMM’01, San Diego, CA, Aug, 2001.

[17] H. L. Yu, D. D. Zheng, B. Y. Zhao, and W. M. Zheng. Understanding
User Behavior in Large-scale Video on Demand Systems. In Proc.
of the ACM Eurosys Conference (Eurosys), Leuven, Belgium, Apr,
2006.

[18] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee How to Model an
Internet. In Proceedings of IEEE INFOCOMM, 1996.


